Colour Terms: a Categorisation Model Inspired by Visual Cortex Neurons

نویسندگان

  • Arash Akbarinia
  • C. Alejandro Párraga
چکیده

Although it seems counter-intuitive, categorical colours do not exist as external physical entities but are very much the product of our brains. Our cortical machinery segments the world and associate objects to specific colour terms, which is not only convenient for communication but also increases the efficiency of visual processing by reducing the dimensionality of input scenes. Although the neural substrate for this phenomenon is unknown, a recent study of cortical colour processing has discovered a set of neurons that are isoresponsive to stimuli in the shape of 3Dellipsoidal surfaces in colour-opponent space. We hypothesise that these neurons might help explain the underlying mechanisms of colour naming in the visual cortex. Following this, we propose a biologically-inspired colour naming model where each colour term – e.g. red, green, blue, yellow, etc. – is represented through an ellipsoid in 3D colour-opponent space. This paradigm is also supported by previous psychophysical colour categorisation experiments whose results resemble such shapes. “Belongingness” of each pixel to different colour categories is computed by a non-linear sigmoidal logistic function. The final colour term for a given pixel is calculated by a maximum pooling mechanism. The simplicity of our model allows its parameters to be learnt from a handful of segmented images. It also offers a straightforward extension to include further colour terms. Additionally, ellipsoids of proposed model can adapt to image contents offering a dynamical solution in order to address phenomenon of colour constancy. Our results on the Munsell chart and two datasets of realworld images show an overall improvement comparing to state-of-the-art algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey.

In the inferior temporal (IT) cortex of monkeys, which has been shown to play a critical role in colour discrimination, there are neurons sensitive to a narrow range of hues and saturation. By contrast, neurons in the retina and the parvocellular layer of the lateral geniculate nucleus (pLGN) encode colours in a way that does not provide explicit representation of hue or saturation, and the pro...

متن کامل

NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization

The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06300  شماره 

صفحات  -

تاریخ انتشار 2017